Shenandoah GC
Part I: The Garbage Collector That Could

Aleksey Shipilév

shade@redhat.com
@shipilev

Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

O rednat

Basics

Basics: OpenJDK GCs Landscape

Young GC

Old GC

Serial, Parallel:

Copy

Mark

Compact

O rednat

Basics: OpenJDK GCs Landscape

Young GC Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :(Sopy Concurrent Mark I Conc. Sweep Does not solve
e . Init Mark Finish Mark et - fragmentation :(

Q redhat

Basics: OpenJDK GCs Landscape

Still a pause :(

Smaller, adjustable,
but still a pause :(.,

Young GC

Old GC

Serial, Parallel:

Copy Mark Compact
CMS:

Copy Concurrent Mark I Conc. Sweep
------- Init Mark Finish Mark
GI1:

Copy Concurrent Mark Compact
-------- Init Mark Finish Mark h

Does not solve
. fragmentation :(

Smaller, adjustable,
but still a pause :(

Q rednat

Basics: OpenJDK GCs Landscape

Young GC

Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :(Sopy Concurrent Mark I Conc. Sweep
S . Init Mark Finish Mark e
G1:
Smaller, adjustable, Copy Concurrent Mark Compact
but still a pause :(., =] =
-------- ° Init Mark Finish Mark
Shenandoah, ZGC:
Concurrent Mark I Conc. Compact

Init Mark

Finish Mark

Does not solve
. fragmentation :(

Smaller, adjustable,
but still a pause :(

Q rednat

Basics: Concurrent GC Only For Large Heaps?

O rednat

Basics: Concurrent GC Only For Large Heaps?

Latencyg, = o x Sizepeqy ¥ MemRef s, * MemLatencyy,

O rednat

Basics: Concurrent GC Only For Large Heaps?

Latencyg, = a x Sizepeqp ¥ MemRe f s, * MemLatencyy,

Heap size collected End-to-end
per GC cycle, memory latency,
MB ns/access
Memory references
during STW,
accesses/MB

O rednat

Basics: Concurrent GC Only For Large Heaps?

Latencys,, components
Observation || a * Stz€peqp \ MemRe f 54 \ MemLatencyg,

Large heap ™ \ W \ ~

m Large heap: large live data sets = need concurrent GC

Q rednat

Basics: Concurrent GC Only For Large Heaps?

Latencys,, components

Observation a * Si2€heap \ MemRe f st \ Mem Latencyg,
Large heap ™) 2
Slow hardware =~ s ™

m Large heap: large live data sets = need concurrent GC
m Slow hardware: memory is slow = need concurrent GC

Q rednat

Basics: Slow Hardware
Raspberry Pi 3, running springboot-petclinic:

-XX:+UseShenandoahGC

Pause Init Mark 8.991ms

Concurrent marking 409M->411M(512M) 246.580ms
Pause Final Mark 3.063ms

Concurrent cleanup 411M->89M(512M) 1.877ms

-XX:+UseParallelGC
Pause Young (Allocation Failure) 323M->47M(464M) 220.702ms

-XX:+UseG1GC
Pause Young (Gl Evacuation Pause) 410M->38M(512M) 164.573ms

Q rednat

Basics: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest DK, backports to 11, 10, and 8

m JDK 8 backport ships in RHEL 7.4+, Fedora 24+

m JDK 11 backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat

https://wiki.openjdk.java.net/display/shenandoah/

Basics: This Message Is Brought To You By

5 fﬁ£ m IMHO, discussing gory GC details
RS 7o without «GC Handbook» is a waste

The Art of Automatic Mémol anagerments Of ti me
V4 %

m Many GCs appear super-innovative,
but in fact they reuse (or reinvent)
ideas from the GC Handbook

m Combinations of those ideas give
rise to many concrete GCs

Q rednat

Overview

Overview: Heap Structure

Shenandoah is a regionalized GC

m Heap division, humongous regions, etc
are similar to G1

m Collects garbage regions first by default

m Not generational by default, no
young/old separation, even temporally

m Tracking inter-region references is not
needed by default

Q rednat

Overview: Usual Cycle

Application active

Three major phases:

Q redhat

Overview: Usual Cycle

| Concurrent mark I
Application active l Application active
Init Mark Final Mark

Three major phases:
1. Concurrent marking

Q redhat

Overview: Usual Cycle

Concurrent mark I Concurrent evacuation

Application active l Application active
Init Mark Final Mark

Application active

Three major phases:
1. Concurrent marking

2. Concurrent evacuation
Q redhat

Overview: Usual Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active
Init Mark Final Mark Init-UR Final-UR

Three major phases:
1. Concurrent marking
2. Concurrent evacuation

3. Concurrent update references (optional) o
2 redhat

Overview: Usual Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

Three major phases:
1. Concurrent marking
2. Concurrent evacuation

3. Concurrent update references (optional) o
2 redhat

Overview: Usual Log

LRUFragger, 100 GB heap, ~ 80 GB live data:

Pause Init Mark 0.227ms

Concurrent marking 84864M->85952M(102400M) 1386.157ms

Pause Final Mark 0.806ms

Concurrent cleanup 85952M->85985M(102400M) 0.176ms

Concurrent evacuation 85985M->98560M(102400M) 473.575ms

Pause Init Update Refs 0.046ms

Concurrent update references 98560M->98944M(102400M) 422.959ms
Pause Final Update Refs 0.088ms

Concurrent cleanup 98944M->84568M(102400M) 18.608ms
Q rednat

Overview: Usual Log

LRUFragger, 100 GB heap, ~ 80 GB live data:

Pause Init Mark 0.227ms

Concurrent marking 84864M->85952M(102400M) 1386.157ms

Pause Final Mark 0.806ms

Concurrent cleanup 85952M->85985M(102400M) 0.176ms

Concurrent evacuation 85985M->98560M(102400M) 473.575ms

Pause Init Update Refs 0.046ms

Concurrent update references 98560M->98944M(102400M) 422.959ms
Pause Final Update Refs 0.088ms

Concurrent cleanup 98944M->84568M(102400M) 18.608ms
Q rednat

Phases

Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object

O rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (Epsilon GC)

O rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (Epsilon GC)

2. Reference counting: track the number of references,
and when refcount drops to 0, treat the object as garbage

O rednat

Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (Epsilon GC)

2. Reference counting: track the number of references,
and when refcount drops to 0, treat the object as garbage

3. Tracing: walk the object graph, find reachable objects,
treat everything else as garbage

O rednat

Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

O rednat

Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

Daily Blues:
«All the marking algorithms do is
coloring white gray, and then coloring gray black»

Slide 16/80. «Shena ‘ redhat

Mark: Stop-The-World Mark

O

When application is stopped, everything is trivial!
Nothing messes up the scan...
Oredhat

Mark: Stop-The-World Mark

O

Found all roots, color them Black,
because they are implicitly reachable
Oredhat

Mark: Stop-The-World Mark

O

References from Black are now Gray,
scanning Gray references
Oredhat

Mark: Stop-The-World Mark

g

Finished scanning Gray, color them Black;
new references are Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
Oredhat

Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
‘redhat

Mark: Stop-The-World Mark

g

Finished: everything reachable is Black;
all garbage is White
‘redhat

Concurrent Mark: Mutator Problems

With concurrent mark
everything gets complicated:
the application runs and
actively mutates the object
graph during the mark

We contemptuously call it
mutator because of that

Q rednat

Concurrent Mark: Mutator Problems

e

Wavefront is here,
and starts scanning the references in Gray object...

O redhat

Concurrent Mark: Mutator Problems

C
*

*

*

*

Mutator removes the reference from Gray...
and inserts it to Black!
Oredhat

Concurrent Mark: Mutator Problems

ol
*
*
*
*

...or mutator inserted the reference to
transitively reachable White object into Black

O redhat

Concurrent Mark: Mutator Problems

...or mutator inserted the reference to
transitively reachable White object into Black

O redhat

Concurrent Mark: Mutator Problems

Mark had finished, and boom: we have reachable White
objects, which we will now reclaim, corrupting the heap

O redhat

Concurrent Mark: Mutator Problems

new

Another quirk: created new new object,
and inserted it into Black
Oredhat

Concurrent Mark: Textbook Says

There are at least three approaches to
solve this problem. All of them require
intercepting heap accesses. Short on time,
we shall discuss what G1 and Shenandoah
are doing.

Q rednat

Concurrent Mark: SATB

o st

O’OO<—C>

Color all removed referents Gray

O redhat

Concurrent Mark: SATB

o st

O’OO<—C>

Color all new objects Black

O redhat

Concurrent Mark: SATB

oot

0‘0@—6

Finishing...

O redhat

Concurrent Mark: SATB

,. ‘
0. :
* .
o -
* []
*
| i i
new

Done!

O redhat

Concurrent Mark: SATB

* |
*
*
*
*
*
*
*
*
new

«Snapshot At The Beginning»:
marked all reachable at mark start

O redhat

Concurrent Mark: SATB Barrier

check 1f we are marking
testb 0x2, 0x20(%ril5)
jne OMG-MARKING
BACK:
... actual store follows ...

somewhere much later

OMG-MARKING:
tens of instructions that add old wvalue
to thread-local buffer, check for overflow,
call into VM slowpath to process the buffer

jmp BACK

Q redhat

Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates

'These can actually be concurrent, but that is not very practical

O rednat

Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots < most heavy-weight
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates +— most heavy-weight

"These can actually be concurrent, but that is not very practical @ redrat

Concurrent Mark: Barriers Cost?

Throughput hit, %
SATB
. Cmp || -1.6
‘F; Cps || -3.5
i Cry
Der || -1.6
Mpg
Smk
Ser
Sfl
Xml || -3.1

2performance compared to STW Sheinandoah with all barriers disabled @ rednat

Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m If you do not care about GC pauses, just use good STW GC
m Empty GC log does not mean no GC overhead

Q rednat

Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m If you do not care about GC pauses, just use good STW GC
m Empty GC log does not mean no GC overhead

2. Hiding references from mark prolongs final mark pause

m Weak references with unreachable referents, finalizers
m «Old» objects hidden in SATB buffers

Q rednat

Copy: Stop-The-World

Problem:
there is the object, the
object is referenced

from somewhere, need
: to move it to new
o . ' location

space ' space
:

Q redhat

Copy: Stop-The-World

Step 1: Stop The World,
: evasive maneuver to
distract mutator from
P, looking into our mess

"From® Tor
space ' space
:

Q redhat

Copy: Stop-The-World

Step 2:
Copy the object with all
its contents
y=2 = [ressssssaaaas ’ y=2
From =3 = |sssssssssaas ’ =3 T

Q rednat

Copy: Stop-The-World

Step 3.1:
: 5 ,- Update all references:
Forwarding REEEEETEEEE] .
Pra IS SN save the pointer that
e WU SV forwards to the copy
"From® z=3; ’ z=3 Tor
Sspace E space

Q redhat

Copy: Stop-The-World

Step 3.2:
5 Update all references:
Forwarding Walk the heap, replace
e all refs with fwdptr
y=2 : y=2 destination

Q rednat

Copy: Stop-The-World

"From"
space

Forwarding

"Ton
space

Step 3.2:
Update all references:
walk the heap, replace

all refs with fwdptr
destination

Q rednat

Copy: Stop-The-World

Everything is fine in the
world, set the mutators
free! Done!

"From® Tor
space H space
:

Q rednat

Concurrent Copy: Mutator Problems

With concurrent
copying everything
gets is significantly

harder: the application
writes into the objects
while we are moving
the same objects!

Hem cmbicna onuceieame npoucxodawee,
noamomy Hanuwy: "Y Hac 8cé xopowo”..

http://vernova-dasha.livejournal.com/77066.html

Q rednat

http://vernova-dasha.livejournal.com/77066.html

Concurrent Copy: Mutator Problems

While object is being
moved, there are two

ceererbeeans copies of the object,
v OO SV p and both are
e SRS SN reachable!
o T
e : coace

O rednat

Concurrent Copy: Mutator Problems

"From"
space

"Ton
space

Thread A writes y =4
to one copy, and
Thread B writes x = 5
to another. Which copy
is correct now, huh?

Q redhat

Concurrent Copy: Brooks Pointers

Idea:
Brooks pointer: object
version change with

additional atomically
: changed indirection
"From" z=3 : "To"

space ' space
:

Q rednat

Concurrent Copy: Brooks Pointers

Step 1:
Copy the object,
» . » initialize its forwarding
e SR SV pointer to self
“Erom" 2=3 R . > 223 o

Q redhat

Concurrent Copy: Brooks Pointers

' We now have the copy

of the object, but no

one knows about it
y=2 y=2
"From" "To"
space : space

O redhat

Concurrent Copy: Brooks Pointers

Step 2:
CAS! Atomically install
forwarding pointer to
point to new copy. If
CAS had failed,
E discover the copy via
rFrom' ~ forwarding pointer

space ' space
'

Q redhat

Concurrent Copy: Brooks Pointers

_ Step3:

: Rewrite the references
at our own pace in the
rest of the heap

(oo : oo

O redhat

Concurrent Copy: Brooks Pointers

"From"
space

If somebody reaches
the old copy via the old
reference, it has to
dereference via fwdptr
and discover the actual
object copy!

Q redhat

Concurrent Copy: Brooks Pointers

Step 4:
All references are
updated, recycle the

Fwd Ptr Fwd Ptr

o from-space copy
y=2 : y=4

"From" =3 i Z=3 "To"

space E space

O redhat

Concurrent Copy: Brooks Pointers

"From"
space

Fwd Ptr

Done!

"Ton
space

Q redhat

Write Barriers: Motivation

To-space invariant:
Writes should happen
in to-space only,
otherwise they are lost
when cycle is finished

"From"
space ' space
H

Q rednat

Write Barriers: Fastpath

testb Ox1, 0x20(%r1b) # Heap ts stable?
jne OMG-FORWARDED-OBJECTS

BACK:
... actual store follows ...

somewhere much later
OMG-FORWARDED-OBJECTS:
mov -0x8(%rbp),%rl0 # Resolve via fwdptr
testb 0x4, 0x20(%r1b) # Evacuation in progress?
jne OMG-EVACUATION
jmp BACK

Q redhat

Write Barriers: Slowpath

stub WriteBarrier(obj) {
if (in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
val copy = copy(obj);
if (CAS(fwd-ptr-addr(obj), obj, copy)) {

return copy; // success!
+ else {
return fwd-ptr(obj); // someone beat us to it

Q rednat

Write Barriers: GC Evacuation Code

stub evacuate(obj) {
if (in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
copy = copy(obj);
CAS(fwd-ptr-addr(obj), obj, copy);

Termination guarantees:
Always copy out of collection set.
Double forwarding is the GC error.

Q rednat

Write Barriers: Barriers Cost?

Throughput hit, %

SATB | WB

. Cmp || -1.6 | -3.5
‘F; Cps || -3.5

i Cry -1.1
Der || -1.6

Mpg -2.1

Smk -0.5

Ser -4.0

Sfl -2.7

Xml || -3.1]-3.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat

Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

m Field stores - obviously
m Locking the object - changes header = needs WB
m Computing identity hash code - changes header = needs WB

Q rednat

Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

m Field stores - obviously
m Locking the object - changes header = needs WB
m Computing identity hash code - changes header = needs WB

2. Passive WB cost is low

m Writes, even the primitive ones, are rare
m The cost of L1-load-test-branch is low

Q rednat

Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

m Field stores - obviously
m Locking the object - changes header = needs WB
m Computing identity hash code - changes header = needs WB

2. Passive WB cost is low

m Writes, even the primitive ones, are rare
m The cost of L1-load-test-branch is low

3. Active WB cost is moderate

m GC does the bulk of the work
m In optimized barrier paths, fwdptr CAS is the major cost

Q rednat

Read Barriers: Motivation

Heap reads have to (?)
dereference via the
forwarding pointer, to
discover the actual
object copy

"From"
space H space
'

Q redhat

Read Barriers: Implementation

read barrier: dereference via fwdptr
mov -0x8(%r10),%r10 # obg = *(obj - 8)

...actual read from /r10 follows. ..

Q rednat

Read Barriers: Implementation

read barrier: dereference via fwdptr
mov -0x8(%r10),%r10 # obg = *(obj - 8)

...actual read from /r10 follows. ..

Benchmark Score Units
base \ +3 RBs
time 4.6 +o.1 5.3 +o.1 ns/op
Ll-dcache-loads | 12.3 +o.2| 15.1 +o3 | #/0p
cycles | 18.7 +o0.3|21.6 +o.3|#/0p
instructions | 26.6 +o.2|30.3 +o.s|#/0p

Q redhat

Read Barriers: Barriers Cost?

Throughput hit, %

SATB| WB| RB

Cmp || -1.6|-3.5| -7.7

3 Cps || -3.5 ~11.4
i Cry -1.1

Der || -1.6 7.4

Mpg -2.1|-12.4

Smk -0.5| -4.9

Ser -4.0 -7.1

Sfl -2.7| -6.7

Xml || -3.1[-3.5] -9.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat

Read Barriers: Observations K8 §

1. Shenandoah needs RBs before most loads

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

Q rednat

Read Barriers: Observations K8 §

1. Shenandoah needs RBs before most loads

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive RB cost is moderate
m Dependent load that hits the same cache line as object

Q rednat

Read Barriers: Observations K8 §

1. Shenandoah needs RBs before most loads

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive RB cost is moderate
m Dependent load that hits the same cache line as object

3. Active RB cost is moderate
m Does not differ much from passive RB

Q rednat

CMP: Trouble

What if we compare

from-copy and to-copy

al | a2 themselves?
x=1 : x=1
- (al == a2) — 777
y=2 y=2
"From" z=3 z=3 "To"
space E space

Q rednat

CMP: Trouble

What if we compare
from-copy and to-copy

themselves?
a1 | 2 (al == a2) — 777
x=1 x=1
o P But machine ptrs are
o . : . not equal... Oops.
space E space

Q redhat

CMP: Exotic Barriers

Having two physical copies of the same logical object,
«==» has to compare logical objects

compare the ptrs; if equal, good!
cmp hrex, fhrdx # 4if (al == a2) ...
je EQUALS

false negative? have to compare to-copy:
mov -0x8 (Y%rex) ,%rcx # al = *(al - 8)
mov -0x8(%rdx) ,%rdx # a2 = *(a2 - 8)

compare again:
cmp hrex, hrdx # if (al == a2) ...

Q rednat

CMP: Barriers Cost?

Throughput hit, %
SATB| WB| RB | CMPx

Cmp || -1.6|-3.5| -7.7
’Fi Cps | -3.5 “11.4
i Cry -1.1
Der || -1.6 7.4
Mpg -2.1]-12.4
Smk -0.5| -4.9
Ser -4.0 -7.1
Sfl -2.7| -6.7
Xml | -3.1|-3.5| -9.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat

CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

Q rednat

CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive CMP cost is low

m Barely detectable in most cases
m Comparisons with null are frequent and optimized

Q rednat

CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive CMP cost is low

m Barely detectable in most cases
m Comparisons with null are frequent and optimized

3. Active CMP cost is low
m Does not differ much from passive RB

Q rednat

Overall: Barriers Cost?

Throughput hit, %

SATB| WB| RB|CMPx || TOTAL

Cmp || -1.6]-3.5| -7.7 -14.3

? Cps || -3.5 ~11.4 ~13.7
i Cry -1.1 -4.3
Der || -1.6 7.4 -9.3

Mpg -2.1[-12.4 -14.8

Smk -0.5| -4.9 -2.6

Ser ~4.0] -7.1 ~11.1

Sf1 -2.7] -6.7 -11.3

Xml || -3.1[-3.5] -9.5 -15.6

2performance compared to STW Sheinandoah with all barriers disabled @ rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Theoretically works with 32-bit arches (but not ported yet)

Q rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Theoretically works with 32-bit arches (but not ported yet)

2. Trivially portable across OSes

m Special needs: none
m Linux is a major target, Windows is minor target
m Adopters build on Mac OS without problems

Q rednat

Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Theoretically works with 32-bit arches (but not ported yet)

2. Trivially portable across OSes

m Special needs: none
m Linux is a major target, Windows is minor target
m Adopters build on Mac OS without problems

3. VM interactions are simple enough

m Play well with compressed oops: separate fwdptr
m OS/CPU-specific things only for barriers codegen

Q rednat

Intermezzo

Intermezzo: Generational Hypotheses

Dying
Probability
7'\

Weak hypothesis:
most objects die young

Weak

» Age

O rednat

Intermezzo: Generational Hypotheses

Dying
Probability

y

A

Strong hypothesis:

the older the object,

the less chance it has
to die

Weak Strong

» Age

O rednat

Intermezzo: Generational Hypotheses

Dying
Probability
7'\

Strong hypothesis:

the older the object,

the less chance it has
to die

In-memory LRU-like
caches are the prime
counterexamples

» Age

O rednat

Intermezzo: LRU, Pesky Workload

Very inconvenient workload for
simple generational GCs

m Early on, many young objects die, and oldies survive:

weak GH is valid, strong GH is valid

m Suddenly, old objects start to die:
weak GH is valid, strong GH is not valid anymore!

m Naive GCs trip over and burn

O rednat

Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

O rednat

Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

cache = new LinkedHashMap<>(size*4/3, 0.75f, true) {
@0verride
protected boolean removeEldestEntry(Map.Entry<> eldest) {
return size() > size;

};

Q rednat

Intermezzo: Testing

Boring config:

1. Latest improvements in all GCs: shenandoah/jdk forest
Decent multithreading: 8 threads on 16-thread i7-7820X
Larger heap: -Xmx100g -Xms100g
90% hit rate, 90% reads, 10% writes
Size (LDS) = 0..100% of -Xmx

e W

Varying cache size = varying LDS = make GC uncomfortable

O rednat

Intermezzo: Pauses vs. LDS

Parallel \ CMS l Shenandoah

sttifiiiig

100 ..,.,,, i | | ,,,it,,

107! =EEEEEEEEEE R =& = == L ==

1072

Pause time, sec (all safepoints)

1072 LI e aaaunsangguiggyyl | 8 0 ([|9 eegam) | HiadENSlENES NN)

v === e

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Live Data Size, % of heap

Q rednat

Intermezzo: Pauses vs. LDS

10!

1072

Pause time, sec (all safepoints)

107

107

Parallel

\ CMS \

Shenandoah

GC

20

40

60 80 100

20 40 60 80 100
Live Data Size, % of heap

Q rednat

Intermezzo: Pauses vs. LDS

Pause time, sec (all safepoints)

10!

10°

107!

1072

107

107

Parallel CMS Shenandoah
\
Lttt + || NoSTW
S s R Ea W [Young GC |

20

40 60

80

20 40 60 80
Live Data Size, % of heap

1

Q rednat

Intermezzo: Pauses vs. LDS

Pause time, sec (all safepoints)

10!

10”

107!

1072

107

107

Shenandoah

Live Data Size, % of heap

Parallel \ CMS
\
.....oofrOO
ettt
[J
[]
Heap
Ove d
| |
20 40 60 80 1 20 40 60 80 1

Q rednat

Intermezzo: Perf vs. LDS

Operation Time, sec

GC Pause Time, %

1806

800
700
600

500
400

300

200

%0
i

60
50

100

90

80
70

60

50

40
30

20

10

20

40 60
Live Data Size, % of heap

80

100

gc @ Parallel ® CMS @ Shenandoah

0 20 40 60 80 100
Live Data Size, % of heap

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Intermezzo: Perf vs. LDS

Operation Time, sec

GC Pause Time, %

1806

800
700
600

500
400

300

200

%0
7

60
50

100

>
Q
[®]
(=]
()
=2
n

90
80

|
GC work

acC

70

Q
=
]

3
o3

60
50

40

30
20

10

\

20

gc @ Parallel ® CMS @ Shenandoah

40 60
Live Data Size, % of heap

80

0 20

40 60
Live Data Size, % of heap

80

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Intermezzo: Perf vs. LDS

Operation Time, sec
:

GC Pause Time, %

1900 | | | = 100 |
$001-s P} -, GC work happens
600 - L - . L
< appears faster! ~ s»—inbackground
400 i 70 | | |
300 I — 60 —
50 —
200
40 -
30
1901 20
oL 4 10
60
50 | ‘ o] T ! !]
20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap
gc @ Parallel ® CMS @ Shenandoah

Live Data Size, % of heap

gc @ Parallel ® CMS @ Shenandoah

Q redhat

Command and Control

Command and Control: Central Dogma

Concurrent GCs are in-background heavy-lifters

m Rely on collecting faster than applications allocate

m Frequently works by itself: threads do useful work, GC
threads are high-priority, there is enough heap to absorb
allocations

m Practical concurrent GCs have to care about unfortunate
cases as well

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

N

Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat

Command and Control: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Immediates: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

Q redhat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms
GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms
GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)

GC(7) Pause Final Mark 0.758ms
GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead

Q rednat

Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7) Total Garbage: 76798M

GC(7) Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead
3. Cycle shortcuts, because why bother...

Q rednat

Footprint: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Footprint: Shenandoah Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation

m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

Q rednat

Footprint: Shenandoah Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation
m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

m Surprise: a significant part of footprint story is heap

sizing, not per-object or per-heap overheads
Qredhat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

800 rvovprrre LI 0 0 U A A, 0 O 0 10 0 A 0 004 ey e e G;1 """ 2
: Sh i
700 : Sh (compact) :
600 - b
m 500 : :
= : :
w400 - B
% : :
300 - -
200 : :
100 :
Load Idle Full GC Idle :
0 L S S S S Lo e F T T 4

40 60 80 100 120

time, sec

Q rednat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

L]

time, sec

Sh (compact)

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

time, sec

Sh (compact)

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

time, sec

FullGC

Q redhat

Footprint: Heap Sizing

RSS, MB

800 ¢ - -
700
600
500
400 :
300 :
200 :

100

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

time, sec

FullGC

Q redhat

Footprint: Heap Sizing

800 ¢- oy
700 :
600 -
500 -

400 :

RSS, MB

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

300 :
200 :

100 ;
tard

0 PRI B

Aggrgssive

Idlel : Load
l20”” I”.l40 lllll
expansion

time, sec

Full GC

Q redhat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

800r """ (O L L B A S S BN A S S L e G;'I """ -|
: Sh = | -
700 : Sh (compact) :
600 - >
m 500 : / :
= : :
= 400 - :
3 ; _/ :
T 300: 3
200 : == .
100 'S
tarf Idle Idle Full GC ldle :
0 PN IS S e e FUE S S S T S S YT S 00 S S N S S S S S S e PO S D S S S S S S S 3

20 60 80 100 120

time, sec

0
First uncommit
Qredhat

Footprint: Heap Sizing

RSS, MB

800
700
600

500 :

400

300 -

200

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

tarf Idle

Sh (compact)

time, sec

Full GC

Q redhat

Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

soogr-- ------ T TR T T TR R e —— S— :
: Sh = | -

700 : Sh (compact)

600 - b

500 :]

400 - :
300 : P
200 : = .
100 / :
tar Idle Load Idle Full GC Idle !
O FRRPEN NS S S S [FORIPRRF N S O SR S S S SR S S 4B DO S S S S S S Lo P 3
0 20 40-/50 80 100 120
Second uncommit time, sec

Q redhat

RSS, MB

Footprint: Heap Sizing

RSS, MB

800 ¢ - -

700
600 -
500 :
400 :
300 -
200 :

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

Sh (compact)

tard

Load

Full GC

Q redhat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
800 ¢+ vy v e T e e e e e e o
: Sh ——
700 : Sh (compact) i
600 * 3

500 : :
400 : :

300 : :

‘\ Idle Load Idle Full GC ldle :

20 40 60 80 100 120
time, sec

Java user CPU, %

200 :

100]

Q rednat

Footprint: CPU Time Tradeoffs

Java user CPU, %

800

700 -

600

500 :

400

300 :
200 :

100

0

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

20

0
Warmups

Idle

Sh (compact)

FH”EC Idle

time, sec

80

¢

100 120

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

BOO £ v v

700 :
600 -
500 -
400 :

300 :

Java user CPU, %

200 :

100 1
tar Idle Load
0 | ettt s 00 N e 4 s s

High footprint, low CPU

A

Idle

Sh (compact)

Full GC
AASAA

Idle

60
time, sec

80

AAtnid

100

120

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
800 v v v v

__ Sh = | :
700 : Sh (compact)

600 :
500 :
400 :

300 :

Java user CPU, %

200 :

100
tar Idle Load Idle FAull GC Idle
0 RS L L SR N AmAA

Low footprint, high CPU

60 80 100 120
time, sec

Q rednat

Footprint: CPU Time Tradeoffs

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m
8O0 £ v g vt e L e e "

__ Sh = | :
700 : Sh (compact)

600 :
500 :
400 :

300 :

100
tar Idle Load Idle FAull GC Idle
0 HEERASS e aa L N AmAA

AAtnid

0 20 40 60 80 100 120

Java user CPU, %

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced

m Blindly counting bytes taken by Java heap and GC does not cut it
m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced
m Blindly counting bytes taken by Java heap and GC does not cut it
m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads
2. Forwarding ptr overhead is substantial, but manageable

m ...especially when the alternative is giving up compressed oops
m In-object fwdptr injection cuts the overhead down (see backup)

Q rednat

Footprint: Observations Q20

1. Footprint story is nuanced

m Blindly counting bytes taken by Java heap and GC does not cut it
m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

2. Forwarding ptr overhead is substantial, but manageable

m ...especially when the alternative is giving up compressed oops
m In-object fwdptr injection cuts the overhead down (see backup)

3. Idle footprint seems to be of most interest
m Few adopters (none?) care about peak footprint, but we still do
m Anecdote: I am running Shenandoah with my IDEA and CLion,
because memory is scarce on my puny ultrabook

Q rednat

Pacing: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Pacing: STW GC Control Loop

Pause

Non-allocating thread
Allocating thread .:
* »
-

o~

~ Alloc H

Ll

% Failure : Recycle
. L]
P

Stop-the-world GC

m Once memory is exhausted, perform GC
m Natural feedback loop: STW is the nominal mode

m Not really accessible for concurrent GC?
Qredhat

Pacing: Naive Conc GC Control Loop

Non-allocating thread

Allocating thread HAIIocation Stall
o |4
+ Alloc .
. . = Recycle
» Failure :
1 Y o
! |

Concurrent GC

m Memory is exhausted = stall allocation and wait for GC
m Technically not a GC pause, but still local latency

m AFs usually happen in all threads at once: global latency
Oredhat

Pacing: Shenandoah Control Loop

Non-allocating thread

Pause
Allocating thread) AIIocatlonlpacmg)
Pl Pl B
v n L. »
1 GC T & Alloc R |
: Progress : : j-‘ Failure « ecycle
L L 4 L2 L 4 hd
I >l >l
Concurrent GC with pacing

Degenerated GC

m Incremental pacing stalls allocations a bit at a time
m If AF happens, «degenerates»: completes under STW
m Pacing introduces latency, but the capped one

O rednat

Pacing: Max Pacing, Pauses

0! Shenandoah | Shenandoah (max pacing)
0 | 8 | |
10 °
o
210 e ——
5
5107
£
B
g
s0o++—rt N S I - . .4 . 5 3 38 3 8 80 3 B R
000{..'%0""'0000 o.o%o.. e®0®000epo0e
107 T—Tiff F o T e e e e e —
0 20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap

Q rednat

Pacing: Max Pacing, Pauses

0! Shenandoah | Shenandoah (max pacing)
Nuclear option:

10° = == =

_ 1 max pacing

E 9

£10” e —— \

f. 1072

g

107 T—Ti—— ——17—7 e || || s, ,,,,,,, =l L.L. ,‘ e L ||

0 20 40 60 80 100 20 40 60 80 100

Live Data Size, % of heap
Q rednat

Pacing: Max Pacing, Times

Operation Time, sec

GC Pause Time, %

1000
900
800

700
600

500
400

300

200

gc @ Shenandoah ® Shenandoah (max pacing

100

90

80

70
60

50

40

30

20

10

20

|
40 60
Live Data Size, % of heap

80

0 20

40 60
Live Data Size, % of heap

80

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Max Pacing, Times

Operation Time, sec

GC Pause Time, %

1000
900
800

700
600

500
400

300

200

gc @ Shenandoah ® Shenandoah (max pacing

100

90

80

Pauses

70

are invisible

60

50
40

30

20

10

20

| |
40 60
Live Data Size, % of heap

80

0 20 40 60
Live Data Size, % of heap

80

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Max Pacing, Times

Operation Time, sec

GC Pause Time, %

1900 EERTY
800 . = o
CI'Yetthe progres I Pauses
s ¥ M | 80 N o
[is wrecked anyway o are invisible |
300 60 B
% \ i
200 40 \]
30 \
N\
100 20
0 10
70 0— |
60 | ; ; T | | |
20 40 60 80 0 0 20 40 60 80 100

Live Data Size, % of heap

gc @ Shenandoah ® Shenandoah (max pacing

Live Data Size, % of heap

gc @ Shenandoah @ Shenandoah (max pacing

Q redhat

Pacing: Observations

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

Q rednat

Pacing: Observations

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

2. Pacing introduces local latency

m Hidden from the tools, hidden from usual GC log
m Latency is not global, making perf analysis harder

Q rednat

Pacing: Observations 8% 6

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

2. Pacing introduces local latency

m Hidden from the tools, hidden from usual GC log
m Latency is not global, making perf analysis harder

3. Nuclear option: max pacing delay = +oo

m Resolves the need for handling allocation failures: thread
always stalls when memory is not available
m Shenandoah caps delay at 10 ms to avoid cheating

Q rednat

Handling Failures: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat

Handling Failures: Shenandoah Control Loop

Non-allocating thread

Allocating thread . AIIocationlpacing .
B o Pl
v A h
2 GC : . Y recvcl
» Progress = Recycle
L L] L ¥
1 L 4 L2 L 4
|]

Concurrent GC with pacing Degenerated GC

m If AF happens, «degenerates»: completes under STW

O rednat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into stop-the-world mode
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q rednat

Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into stop-the-world mode
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC

Q rednat

Handling Failures: Full GC

Full GC is the Maximum Credible Accident;
Parallel, STW, Sliding «Lisp 2»-style GC.

m Designed to recover from anything: 99% full regions,
heavy (humongous) fragmentation, abort from any point
in concurrent GC, etc.

m Parallel: Multi-threaded, runs on-par with Parallel GC

m Sliding: No additional memory needed + reuses fwdptr
slots to store forwarding data

O rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

Q rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

2. Graceful and observable degradation is key

m Getting worse incrementally is better than falling off the cliff
m Have enough logging to diagnose the degradations

Q rednat

Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

2. Graceful and observable degradation is key

m Getting worse incrementally is better than falling off the cliff
m Have enough logging to diagnose the degradations

3. Failure paths performance is important
m Degenerated GC is not throwing away progress
m Full GCis optimized too

Q rednat

Conclusion

Conclusion: In Single Picture

Universal GC does not exist:
either low latency, or high throughput
(, or low memory footprint)

| Shenandoah, ZGC | | Parallel, Serial |
| G1, CMS |
Pause times

>

1ms 10 ms 100 ms 1ls 10s

Runtime overheads
<
20% 15% 10% 5% 0%

Choose this for your workload!

O rednat

Conclusion: In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

O redhat

Conclusion: In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

2. Stop-the-world GCs beat concurrent GCs in throughput
and efficiency. Parallel GC is your choice!

O redhat

Conclusion: In Single Paragraph

1. No GC could detect what tradeoffs you are after: you
have to tell it yourself

2. Stop-the-world GCs beat concurrent GCs in throughput
and efficiency. Parallel GC is your choice!

3. Concurrent Mark trims down the pauses significantly.
G1 is ready for this, use it!

O redhat

Conclusion: In Single Paragraph

1.

No GC could detect what tradeoffs you are after: you
have to tell it yourself

. Stop-the-world GCs beat concurrent GCs in throughput

and efficiency. Parallel GC is your choice!

Concurrent Mark trims down the pauses significantly.
G1 is ready for this, use it!

Concurrent Copy/Compact needs to be addressed for
even shallower pauses. This is where Shenandoah and
ZGC come in!

O redhat

Conclusion: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest DK, backports to 11, 10, and 8

m JDK 8 backport ships in RHEL 7.4+, Fedora 24+

m JDK 11 backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat

https://wiki.openjdk.java.net/display/shenandoah/

	Basics
	Overview
	Phases
	Mark
	Concurrent Mark
	Copy
	Concurrent Copy
	Write Barriers
	Read Barriers
	CMP
	Overall

	Intermezzo
	Command and Control
	Immediates
	Footprint
	Pacing
	Handling Failures

	Conclusion

