Shenandoah GC
Part I: The Garbage Collector That Could

Aleksey Shipilév

shade@redhat.com
@shipilev



Safe Harbor / Tuxaa N'aBaHb

Anything on this or any subsequent slides may be a lie. Do
not base your decisions on this talk. If you do, ask for
professional help.

Bcé uto yrogHO Ha 3TOM cnaije, Kak 1 Ha BCex CiefyoLnx,
MOXeT 6bITb BpaHbEM. He npvHUMaliTe peLlleHunin Ha
OCHOBaHMWM 3TOro Aoknaga. Ecav Bcé-Takm pewunte NpUHSATD,
TO HallMUTe NpodpeccnoHanos.

O rednat
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Basics: OpenJDK GCs Landscape

Young GC

Old GC

Serial, Parallel:

Copy Mark Compact
CMS:
Still a pause :( Sopy Concurrent Mark I Conc. Sweep
S . Init Mark Finish Mark e
G1:
Smaller, adjustable, Copy Concurrent Mark Compact
but still a pause :( ., = ] =
-------- ° Init Mark Finish Mark
Shenandoah, ZGC:
Concurrent Mark I Conc. Compact

Init Mark

Finish Mark

Does not solve
. fragmentation :(

Smaller, adjustable,
but still a pause :(

Q rednat
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Basics: Concurrent GC Only For Large Heaps?

Latencyg, = a x Sizepeqp ¥ MemRe f s, * MemLatencyy,

Heap size collected End-to-end
per GC cycle, memory latency,
MB ns/access
Memory references
during STW,
accesses/MB
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Basics: Concurrent GC Only For Large Heaps?

Latencys,, components

Observation a * Si2€heap \ MemRe f st \ Mem Latencyg,
Large heap ™ ) 2
Slow hardware =~ s ™

m Large heap: large live data sets = need concurrent GC
m Slow hardware: memory is slow = need concurrent GC

Q rednat



Basics: Slow Hardware
Raspberry Pi 3, running springboot-petclinic:

# -XX:+UseShenandoahGC

Pause Init Mark 8.991ms

Concurrent marking 409M->411M(512M) 246.580ms
Pause Final Mark 3.063ms

Concurrent cleanup 411M->89M(512M) 1.877ms

# -XX:+UseParallelGC
Pause Young (Allocation Failure) 323M->47M(464M) 220.702ms

# -XX:+UseG1GC
Pause Young (Gl Evacuation Pause) 410M->38M(512M) 164.573ms

Q rednat



Basics: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest DK, backports to 11, 10, and 8

m JDK 8 backport ships in RHEL 7.4+, Fedora 24+

m JDK 11 backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat
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Basics: This Message Is Brought To You By

5 fﬁ£ m IMHO, discussing gory GC details
RS 7o without «GC Handbook» is a waste

The Art of Automatic Mémol anagerments Of ti me
V4 %

m Many GCs appear super-innovative,
but in fact they reuse (or reinvent)
ideas from the GC Handbook

m Combinations of those ideas give
rise to many concrete GCs

Q rednat
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Overview: Heap Structure

Shenandoah is a regionalized GC

m Heap division, humongous regions, etc
are similar to G1

m Collects garbage regions first by default

m Not generational by default, no
young/old separation, even temporally

m Tracking inter-region references is not
needed by default

Q rednat



Overview: Usual Cycle

Application active

Three major phases:
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Overview: Usual Cycle

Concurrent mark I Concurrent evacuation Concurrent update refs

Application active l Application active Application active Application Active | Application Active
Init Mark Final Mark Init-UR Final-UR

Three major phases:
1. Concurrent marking
2. Concurrent evacuation

3. Concurrent update references (optional) o
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Overview: Usual Log

LRUFragger, 100 GB heap, ~ 80 GB live data:

Pause Init Mark 0.227ms

Concurrent marking 84864M->85952M(102400M) 1386.157ms

Pause Final Mark 0.806ms

Concurrent cleanup 85952M->85985M(102400M) 0.176ms

Concurrent evacuation 85985M->98560M(102400M) 473.575ms

Pause Init Update Refs 0.046ms

Concurrent update references 98560M->98944M(102400M) 422.959ms
Pause Final Update Refs 0.088ms

Concurrent cleanup 98944M->84568M(102400M) 18.608ms
Q rednat
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Concurrent cleanup 85952M->85985M(102400M) 0.176ms
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Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object
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Mark: Reachability

To catch a garbage, you have to thinklike-a-garbage

know if there are references to the object

Three basic approaches:
1. No-op: ignore the problem (Epsilon GC)

2. Reference counting: track the number of references,
and when refcount drops to 0, treat the object as garbage

3. Tracing: walk the object graph, find reachable objects,
treat everything else as garbage

O rednat



Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

O rednat



Mark: Three-Color Abstraction

Assign colors to the objects:
1. White: not yet visited
2. Gray: visited, but references are not scanned yet
3. Black: visited, and fully scanned

Daily Blues:
«All the marking algorithms do is
coloring white gray, and then coloring gray black»

Slide 16/80. «Shena ‘ redhat



Mark: Stop-The-World Mark

O

When application is stopped, everything is trivial!
Nothing messes up the scan...
Oredhat



Mark: Stop-The-World Mark

O

Found all roots, color them Black,
because they are implicitly reachable
Oredhat



Mark: Stop-The-World Mark

O

References from Black are now Gray,
scanning Gray references
Oredhat



Mark: Stop-The-World Mark

g

Finished scanning Gray, color them Black;
new references are Gray
Oredhat
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Mark: Stop-The-World Mark

g

Gray — Black;
reachable from Gray — Gray
‘redhat



Mark: Stop-The-World Mark

g

Finished: everything reachable is Black;
all garbage is White
‘redhat



Concurrent Mark: Mutator Problems

With concurrent mark
everything gets complicated:
the application runs and
actively mutates the object
graph during the mark

We contemptuously call it
mutator because of that

Q rednat



Concurrent Mark: Mutator Problems

e

Wavefront is here,
and starts scanning the references in Gray object...

O redhat



Concurrent Mark: Mutator Problems

C
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Mutator removes the reference from Gray...
and inserts it to Black!
Oredhat



Concurrent Mark: Mutator Problems
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*
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...or mutator inserted the reference to
transitively reachable White object into Black
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Concurrent Mark: Mutator Problems

...or mutator inserted the reference to
transitively reachable White object into Black
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Concurrent Mark: Mutator Problems

Mark had finished, and boom: we have reachable White
objects, which we will now reclaim, corrupting the heap

O redhat



Concurrent Mark: Mutator Problems

new

Another quirk: created new new object,
and inserted it into Black
Oredhat



Concurrent Mark: Textbook Says

There are at least three approaches to
solve this problem. All of them require
intercepting heap accesses. Short on time,
we shall discuss what G1 and Shenandoah
are doing.

Q rednat



Concurrent Mark: SATB

o st

O’OO<—C>

Color all removed referents Gray
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Concurrent Mark: SATB

o st
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Color all new objects Black
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Concurrent Mark: SATB

oot

0‘0@—6

Finishing...

O redhat



Concurrent Mark: SATB

,. ‘
0. :
* .
o -
* [ ]
*
| i i
new

Done!

O redhat



Concurrent Mark: SATB

* |
*
*
*
*
*
*
*
*
new

«Snapshot At The Beginning»:
marked all reachable at mark start

O redhat



Concurrent Mark: SATB Barrier

# check 1f we are marking
testb 0x2, 0x20(%ril5)
jne  OMG-MARKING
BACK:
# ... actual store follows ...

# somewhere much later

OMG-MARKING:
# tens of instructions that add old wvalue
# to thread-local buffer, check for overflow,
# call into VM slowpath to process the buffer

jmp BACK

Q redhat



Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates

'These can actually be concurrent, but that is not very practical

O rednat



Concurrent Mark: Two Pauses’

Init Mark: stop the mutator to avoid races
1. Walk and mark all roots < most heavy-weight
2. Arm SATB barriers

Final Mark: stop the mutator to avoid races
1. Drain the thread buffers
2. Finish work from buffer updates +— most heavy-weight

"These can actually be concurrent, but that is not very practical @ redrat



Concurrent Mark: Barriers Cost?

Throughput hit, %
SATB
. Cmp || -1.6
‘F; Cps || -3.5
i Cry
Der || -1.6
Mpg
Smk
Ser
Sfl
Xml || -3.1

2performance compared to STW Sheinandoah with all barriers disabled @ rednat



Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m If you do not care about GC pauses, just use good STW GC
m Empty GC log does not mean no GC overhead

Q rednat



Concurrent Mark: Observations K8 §

1. Extended concurrency needs to pay with more barriers

m Ideal STW GC beats ideal concurrent GC on pure throughput
m If you do not care about GC pauses, just use good STW GC
m Empty GC log does not mean no GC overhead

2. Hiding references from mark prolongs final mark pause

m Weak references with unreachable referents, finalizers
m «Old» objects hidden in SATB buffers

Q rednat



Copy: Stop-The-World

Problem:
there is the object, the
object is referenced

from somewhere, need
: to move it to new
o . ' location

space ' space
:

Q redhat



Copy: Stop-The-World

Step 1: Stop The World,
: evasive maneuver to
distract mutator from
P, looking into our mess

"From® Tor
space ' space
:

Q redhat



Copy: Stop-The-World

Step 2:
Copy the object with all
its contents
y=2 = [ressssssaaaas ’ y=2
From =3 = |sssssssssaas ’ =3 T

Q rednat



Copy: Stop-The-World

Step 3.1:
: 5 ,- Update all references:
Forwarding REEEEETEEEE] .
Pra IS SN save the pointer that
e WU SV forwards to the copy
"From® z=3 .......; ..... ’ z=3 Tor
Sspace E space

Q redhat



Copy: Stop-The-World

Step 3.2:
5 Update all references:
Forwarding ..... Walk the heap, replace
e all refs with fwdptr
y=2 ..... : y=2 destination

Q rednat



Copy: Stop-The-World

"From"
space

Forwarding

"Ton
space

Step 3.2:
Update all references:
walk the heap, replace

all refs with fwdptr
destination

Q rednat



Copy: Stop-The-World

Everything is fine in the
world, set the mutators
free! Done!

"From® Tor
space H space
:

Q rednat



Concurrent Copy: Mutator Problems

With concurrent
copying everything
gets is significantly

harder: the application
writes into the objects
while we are moving
the same objects!

Hem cmbicna onuceieame npoucxodawee,
noamomy Hanuwy: "Y Hac 8cé xopowo”..

http://vernova-dasha.livejournal.com/77066.html

Q rednat


http://vernova-dasha.livejournal.com/77066.html

Concurrent Copy: Mutator Problems

While object is being
moved, there are two

ceererbeeans copies of the object,
v OO SV p and both are
e SRS SN reachable!
o T
e : coace

O rednat



Concurrent Copy: Mutator Problems

"From"
space

"Ton
space

Thread A writes y =4
to one copy, and
Thread B writes x = 5
to another. Which copy
is correct now, huh?

Q redhat



Concurrent Copy: Brooks Pointers

Idea:
Brooks pointer: object
version change with

additional atomically
: changed indirection
"From" z=3 : "To"

space ' space
:

Q rednat



Concurrent Copy: Brooks Pointers

Step 1:
Copy the object,
» . » initialize its forwarding
e SR SV pointer to self
“Erom" 2=3 R . > 223 o

Q redhat



Concurrent Copy: Brooks Pointers

' We now have the copy

of the object, but no

one knows about it
y=2 y=2
"From" "To"
space : space

O redhat



Concurrent Copy: Brooks Pointers

Step 2:
CAS! Atomically install
forwarding pointer to
point to new copy. If
CAS had failed,
E discover the copy via
rFrom' ~  forwarding pointer

space ' space
'

Q redhat



Concurrent Copy: Brooks Pointers

_ Step3:

: Rewrite the references
at our own pace in the
rest of the heap

(oo : oo

O redhat



Concurrent Copy: Brooks Pointers

"From"
space

If somebody reaches
the old copy via the old
reference, it has to
dereference via fwdptr
and discover the actual
object copy!

Q redhat



Concurrent Copy: Brooks Pointers

Step 4:
All references are
updated, recycle the

Fwd Ptr Fwd Ptr

o from-space copy
y=2 : y=4

"From" =3 i Z=3 "To"

space E space

O redhat



Concurrent Copy: Brooks Pointers

"From"
space

Fwd Ptr

Done!

"Ton
space

Q redhat



Write Barriers: Motivation

To-space invariant:
Writes should happen
in to-space only,
otherwise they are lost
when cycle is finished

"From"
space ' space
H

Q rednat



Write Barriers: Fastpath

testb Ox1, 0x20(%r1b) # Heap ts stable?
jne  OMG-FORWARDED-OBJECTS

BACK:
# ... actual store follows ...

# somewhere much later
OMG-FORWARDED-OBJECTS:
mov  -0x8(%rbp),%rl0 # Resolve via fwdptr
testb 0x4, 0x20(%r1b) # Evacuation in progress?
jne OMG-EVACUATION
jmp  BACK

Q redhat




Write Barriers: Slowpath

stub WriteBarrier(obj) {
if (in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
val copy = copy(obj);
if (CAS(fwd-ptr-addr(obj), obj, copy)) {

return copy; // success!
+ else {
return fwd-ptr(obj); // someone beat us to it

Q rednat



Write Barriers: GC Evacuation Code

stub evacuate(obj) {
if (in-collection-set(obj) && // target is in from-space
fwd-ptrs-to-self(obj)) { // no copy yet
copy = copy(obj);
CAS(fwd-ptr-addr(obj), obj, copy);

Termination guarantees:
Always copy out of collection set.
Double forwarding is the GC error.

Q rednat



Write Barriers: Barriers Cost?

Throughput hit, %

SATB | WB

. Cmp || -1.6 | -3.5
‘F; Cps || -3.5

i Cry -1.1
Der || -1.6

Mpg -2.1

Smk -0.5

Ser -4.0

Sfl -2.7

Xml || -3.1]-3.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat



Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

m Field stores - obviously
m Locking the object - changes header = needs WB
m Computing identity hash code - changes header = needs WB

Q rednat
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Write Barriers: Observations K8 §

1. Shenandoah needs WB on all stores

m Field stores - obviously
m Locking the object - changes header = needs WB
m Computing identity hash code - changes header = needs WB

2. Passive WB cost is low

m Writes, even the primitive ones, are rare
m The cost of L1-load-test-branch is low

3. Active WB cost is moderate

m GC does the bulk of the work
m In optimized barrier paths, fwdptr CAS is the major cost

Q rednat



Read Barriers: Motivation

Heap reads have to (?)
dereference via the
forwarding pointer, to
discover the actual
object copy

"From"
space H space
'

Q redhat



Read Barriers: Implementation

# read barrier: dereference via fwdptr
mov -0x8(%r10),%r10 # obg = *(obj - 8)

# ...actual read from /r10 follows. ..

Q rednat



Read Barriers: Implementation

# read barrier: dereference via fwdptr
mov -0x8(%r10),%r10 # obg = *(obj - 8)

# ...actual read from /r10 follows. ..

Benchmark Score Units
base \ +3 RBs
time 4.6 +o.1 5.3 +o.1 ns/op
Ll-dcache-loads | 12.3 +o.2| 15.1 +o3 | #/0p
cycles | 18.7 +o0.3|21.6 +o.3|#/0p
instructions | 26.6 +o.2|30.3 +o.s|#/0p

Q redhat



Read Barriers: Barriers Cost?

Throughput hit, %

SATB| WB| RB

Cmp || -1.6|-3.5| -7.7

3 Cps || -3.5 ~11.4
i Cry -1.1

Der || -1.6 7.4

Mpg -2.1|-12.4

Smk -0.5| -4.9

Ser -4.0 -7.1

Sfl -2.7| -6.7

Xml || -3.1[-3.5] -9.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat



Read Barriers: Observations K8 §

1. Shenandoah needs RBs before most loads

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

Q rednat
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Read Barriers: Observations K8 §

1. Shenandoah needs RBs before most loads

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive RB cost is moderate
m Dependent load that hits the same cache line as object

3. Active RB cost is moderate
m Does not differ much from passive RB

Q rednat



CMP: Trouble

What if we compare

from-copy and to-copy

al | a2 themselves?
x=1 : x=1
- (al == a2) — 777
y=2 y=2
"From" z=3 z=3 "To"
space E space

Q rednat



CMP: Trouble

What if we compare
from-copy and to-copy

themselves?
a1 | 2 (al == a2) — 777
x=1 x=1
o P But machine ptrs are
o . : . not equal... Oops.
space E space

Q redhat



CMP: Exotic Barriers

Having two physical copies of the same logical object,
«==» has to compare logical objects

# compare the ptrs; if equal, good!
cmp hrex, fhrdx # 4if (al == a2) ...
je EQUALS

# false negative? have to compare to-copy:
mov -0x8 (Y%rex) ,%rcx # al = *(al - 8)
mov -0x8(%rdx) ,%rdx # a2 = *(a2 - 8)

# compare again:
cmp hrex, hrdx # if (al == a2) ...

Q rednat



CMP: Barriers Cost?

Throughput hit, %
SATB| WB|  RB | CMPx

Cmp || -1.6|-3.5| -7.7
’Fi Cps | -3.5 “11.4
i Cry -1.1
Der || -1.6 7.4
Mpg -2.1]-12.4
Smk -0.5| -4.9
Ser -4.0 -7.1
Sfl -2.7| -6.7
Xml | -3.1|-3.5| -9.5

Zperformance compared to STW Shenandoah with all barriers disabled @ rednat



CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

Q rednat



CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive CMP cost is low

m Barely detectable in most cases
m Comparisons with null are frequent and optimized

Q rednat



CMP: Observations Q20

1. Shenandoah needs to handle ref comparisons specially

m Cannot make RBs much heavier
m Optimizing compilers move and coalesce RB - massive gains

2. Passive CMP cost is low

m Barely detectable in most cases
m Comparisons with null are frequent and optimized

3. Active CMP cost is low
m Does not differ much from passive RB

Q rednat



Overall: Barriers Cost?

Throughput hit, %

SATB| WB|  RB|CMPx || TOTAL

Cmp || -1.6]-3.5| -7.7 -14.3

? Cps || -3.5 ~11.4 ~13.7
i Cry -1.1 -4.3
Der || -1.6 7.4 -9.3

Mpg -2.1[-12.4 -14.8

Smk -0.5| -4.9 -2.6

Ser ~4.0] -7.1 ~11.1

Sf1 -2.7] -6.7 -11.3

Xml || -3.1[-3.5] -9.5 -15.6

2performance compared to STW Sheinandoah with all barriers disabled @ rednat



Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Theoretically works with 32-bit arches (but not ported yet)
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Overall: Observations K8 §

1. Easily portable across HW architectures

m Special needs: CAS (performance is important, but not critical)
m x86_64 and AArch64 are major implemented targets
m Theoretically works with 32-bit arches (but not ported yet)

2. Trivially portable across OSes

m Special needs: none
m Linux is a major target, Windows is minor target
m Adopters build on Mac OS without problems

3. VM interactions are simple enough

m Play well with compressed oops: separate fwdptr
m OS/CPU-specific things only for barriers codegen

Q rednat
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Intermezzo: Generational Hypotheses

Dying
Probability
7'\

Weak hypothesis:
most objects die young

Weak

» Age

O rednat
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the less chance it has
to die

Weak Strong

» Age

O rednat



Intermezzo: Generational Hypotheses

Dying
Probability
7'\

Strong hypothesis:

the older the object,

the less chance it has
to die

In-memory LRU-like
caches are the prime
counterexamples

» Age

O rednat



Intermezzo: LRU, Pesky Workload

Very inconvenient workload for
simple generational GCs

m Early on, many young objects die, and oldies survive:

weak GH is valid, strong GH is valid

m Suddenly, old objects start to die:
weak GH is valid, strong GH is not valid anymore!

m Naive GCs trip over and burn

O rednat



Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

O rednat



Intermezzo: The Simplest LRU

The simplest LRU implementation in Java?

cache = new LinkedHashMap<>(size*4/3, 0.75f, true) {
@0verride
protected boolean removeEldestEntry(Map.Entry<> eldest) {
return size() > size;

};

Q rednat



Intermezzo: Testing

Boring config:

1. Latest improvements in all GCs: shenandoah/jdk forest
Decent multithreading: 8 threads on 16-thread i7-7820X
Larger heap: -Xmx100g -Xms100g
90% hit rate, 90% reads, 10% writes
Size (LDS) = 0..100% of -Xmx

e W

Varying cache size = varying LDS = make GC uncomfortable

O rednat
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Intermezzo: Perf vs. LDS
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Intermezzo: Perf vs. LDS
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Command and Control: Central Dogma

Concurrent GCs are in-background heavy-lifters

m Rely on collecting faster than applications allocate

m Frequently works by itself: threads do useful work, GC
threads are high-priority, there is enough heap to absorb
allocations

m Practical concurrent GCs have to care about unfortunate
cases as well

Q rednat
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Command and Control: Off To The Races Q26

[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
above the time for allocation rate (3254.90 MB/s) to
deplete free headroom (13071M)

Want better conc GC performance, less frequent GC cycles?
m GC Time. Get more GC threads, have coarser objects, etc
m Allocation Rate. Get easy on excessive allocations
m Heap Size. Give concurrent GC more heap to play with

Q rednat
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[1003.2s] [gc] Trigger: Average GC time (4018.8 ms) is
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Want better conc GC performance, less frequent GC cycles?
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m Heap Size. Give concurrent GC more heap to play with
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Command and Control: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat



Immediates: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade
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Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7)  Total Garbage: 76798M

GC(7)  Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms
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GC(7)  Total Garbage: 76798M

GC(7)  Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead
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Immediates: Obvious Shortcut

GC(7) Pause Init Mark 0.614ms

GC(7) Concurrent marking 76812M->76864M(102400M) 1.650ms

GC(7)  Total Garbage: 76798M

GC(7)  Immediate Garbage: 75072M, 2346 regions (97% of total)
GC(7) Pause Final Mark 0.758ms

GC(7) Concurrent cleanup 76864M->1844M(102400M) 3.346ms

1. Mark is fast, because most things are dead
2. Lots of fully dead regions, because most objects are dead
3. Cycle shortcuts, because why bother...

Q rednat



Footprint: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat



Footprint: Shenandoah Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation

m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

Q rednat



Footprint: Shenandoah Overheads

Shenandoah requires additional word per object
for forwarding pointer at all times, plus some native structs

m Java heap: 1.5x worst and 1.05-1.10x avg overhead
«—»: the overhead is non-static
«+»: counted in Java heap - no surprise RSS inflation
m Native structures: 2x marking bitmaps, each 1/64 of heap
«—»: -Xmx is still not close to RSS
«+»: overhead is static: -Xmx100g means 103 GB RSS

m Surprise: a significant part of footprint story is heap

sizing, not per-object or per-heap overheads
Qredhat



Footprint: Heap Sizing
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Footprint: Heap Sizing
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Footprint: Heap Sizing

wildfly-swarm-rest-http, 30K rps, JDK head x86-64, -Xmx512m

800r """ (O L L B A S S BN A S S L e G;'I """ -|
: Sh = | -
700 : Sh (compact) :
600 - >
m 500 : / :
= : :
= 400 - :
3 ; _/ :
T 300: 3
200 : == .
100 'S
tarf Idle Idle Full GC ldle :
0 PN IS S e e FUE S S S T S S YT S 00 S S N S S S S S S e PO S D S S S S S S S 3

20 60 80 100 120

time, sec

0
First uncommit
Qredhat



Footprint: Heap Sizing
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Footprint: Heap Sizing
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Footprint: Heap Sizing
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Footprint: CPU Time Tradeoffs
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Footprint: CPU Time Tradeoffs
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Footprint: CPU Time Tradeoffs
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Footprint: CPU Time Tradeoffs
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Footprint: CPU Time Tradeoffs
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Footprint: Observations Q20

1. Footprint story is nuanced

m Blindly counting bytes taken by Java heap and GC does not cut it
m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

Q rednat
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2. Forwarding ptr overhead is substantial, but manageable

m ...especially when the alternative is giving up compressed oops
m In-object fwdptr injection cuts the overhead down (see backup)

Q rednat



Footprint: Observations Q20

1. Footprint story is nuanced

m Blindly counting bytes taken by Java heap and GC does not cut it
m First-order effect: heap sizing policies
m Second-order effects: per-object and per-reference overheads

2. Forwarding ptr overhead is substantial, but manageable

m ...especially when the alternative is giving up compressed oops
m In-object fwdptr injection cuts the overhead down (see backup)

3. Idle footprint seems to be of most interest
m Few adopters (none?) care about peak footprint, but we still do
m Anecdote: I am running Shenandoah with my IDEA and CLion,
because memory is scarce on my puny ultrabook

Q rednat



Pacing: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat



Pacing: STW GC Control Loop

Pause

Non-allocating thread
Allocating thread .:
* »
-

o~

~ Alloc H

Ll

% Failure : Recycle
. L]
P

Stop-the-world GC

m Once memory is exhausted, perform GC
m Natural feedback loop: STW is the nominal mode

m Not really accessible for concurrent GC?
Qredhat



Pacing: Naive Conc GC Control Loop

Non-allocating thread

Allocating thread HAIIocation Stall
o |4
+ Alloc .
. . = Recycle
» Failure :
1 Y o
! |

Concurrent GC

m Memory is exhausted = stall allocation and wait for GC
m Technically not a GC pause, but still local latency

m AFs usually happen in all threads at once: global latency
Oredhat



Pacing: Shenandoah Control Loop

Non-allocating thread

Pause
Allocating thread ) AIIocatlonlpacmg )
Pl Pl B
v n L. »
1 GC T & Alloc R |
: Progress : : j-‘ Failure  « ecycle
L L 4 L2 L 4 hd
I >l >l
Concurrent GC with pacing

Degenerated GC

m Incremental pacing stalls allocations a bit at a time
m If AF happens, «degenerates»: completes under STW
m Pacing introduces latency, but the capped one

O rednat



Pacing: Max Pacing, Pauses
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Pacing: Max Pacing, Pauses
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Pacing: Max Pacing, Times
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Pacing: Max Pacing, Times
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Pacing: Observations

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

Q rednat
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Pacing: Observations 8% 6

1. Pacing provides essential negative feedback loop

m Thread allocates? Thread pays for it!
m Thread does not allocate as much? It can run freely!

2. Pacing introduces local latency

m Hidden from the tools, hidden from usual GC log
m Latency is not global, making perf analysis harder

3. Nuclear option: max pacing delay = +oo

m Resolves the need for handling allocation failures: thread
always stalls when memory is not available
m Shenandoah caps delay at 10 ms to avoid cheating

Q rednat



Handling Failures: Living Space

Problem:
Concurrent GC needs breathing room to succeed,
while applications allocate like madmen

Things that help:
m Immediate garbage shortcuts: free memory early
m Aggressive heap expansion: prefer taking more memory
m Mutator pacing: stall allocators before they hit the wall
m Handling failures: gracefully degrade

Q rednat



Handling Failures: Shenandoah Control Loop

Non-allocating thread

Allocating thread . AIIocationlpacing .
B o Pl
v A h
2 GC : . Y recvcl
» Progress = Recycle
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Concurrent GC with pacing Degenerated GC

m If AF happens, «degenerates»: completes under STW
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Handling Failures: Degenerated GC

Pause Init Update Refs 0.034ms

Cancelling GC: Allocation Failure

Concurrent update references 7265M->8126M(8192M) 248.467ms
Pause Degenerated GC (Update Refs) 8126M->2716M(8192M) 29.787ms

m First allocation failure dives into stop-the-world mode
m Degenerated GC continues the cycle
m Second allocation failure may upgrade to Full GC
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Handling Failures: Full GC

Full GC is the Maximum Credible Accident;
Parallel, STW, Sliding «Lisp 2»-style GC.

m Designed to recover from anything: 99% full regions,
heavy (humongous) fragmentation, abort from any point
in concurrent GC, etc.

m Parallel: Multi-threaded, runs on-par with Parallel GC

m Sliding: No additional memory needed + reuses fwdptr
slots to store forwarding data

O rednat



Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

Q rednat
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Handling Failures: Observations 8% 6

1. Being fully concurrent is nice, but own the failures

m The failures will happen, accept it
m «Our perfect GC melted down, because you forgot this magic
VM option(, stupid)» flies only that far

2. Graceful and observable degradation is key

m Getting worse incrementally is better than falling off the cliff
m Have enough logging to diagnose the degradations

3. Failure paths performance is important
m Degenerated GC is not throwing away progress
m Full GCis optimized too

Q rednat
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Conclusion: In Single Picture

Universal GC does not exist:
either low latency, or high throughput
(, or low memory footprint)

| Shenandoah, ZGC | | Parallel, Serial |
| G1, CMS |
Pause times

>

1ms 10 ms 100 ms 1ls 10s

Runtime overheads
<
20% 15% 10% 5% 0%

Choose this for your workload!

O rednat
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1. No GC could detect what tradeoffs you are after: you
have to tell it yourself
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Conclusion: In Single Paragraph

1.

No GC could detect what tradeoffs you are after: you
have to tell it yourself

. Stop-the-world GCs beat concurrent GCs in throughput

and efficiency. Parallel GC is your choice!

Concurrent Mark trims down the pauses significantly.
G1 is ready for this, use it!

Concurrent Copy/Compact needs to be addressed for
even shallower pauses. This is where Shenandoah and
ZGC come in!

O redhat



Conclusion: Releases

Easy to access (development) releases: try it now!
https://wiki.openjdk. java.net/display/shenandoah/

m Dev follows latest DK, backports to 11, 10, and 8

m JDK 8 backport ships in RHEL 7.4+, Fedora 24+

m JDK 11 backport ships in Fedora 27+

m Nightly development builds (tarballs, Docker images)

docker run -it --rm shipilev/openjdk-shenandoah \
java -XX:+UseShenandoahGC -Xlog:gc -version

Q rednat


https://wiki.openjdk.java.net/display/shenandoah/
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